Supplemental Material

Air Pollution-Mediated Susceptibility to Inflammation and Insulin Resistance: Influence of CCR2 Pathways in Mice

Cuiqing Liu, Xiaohua Xu, Yuntao Bai, Tse-Yao Wang, Xiaoquan Rao, Aixia Wang, Lixian Sun, Zhekang Ying, Liubov Gushchina, Andrei Maiseyeu, Masako Morishita, Qinghua Sun, Jack R. Harkema, and Sanjay Rajagopalan

Table of Contents

Content	Pages
Supplemental Material, Table S1	2
Supplemental Material, Table S2	3
Supplemental Material, Figure S1	4
Supplemental Material, Figure S2	5
Supplemental Material, Figure S3	6-7
Supplemental Material, Figure S4	8

Supplemental Material, Table S1. Elemental constituents of air from OASIS in Columbus, Ohio, December 2011 to March 2012 by energy-dispersive X-ray fluorescence.

Elements	Ambient Air	Filtered Air	PM _{2.5} Air	
S	672.0 ± 146.6	-0.1 ± 43.6	6020.0 ± 3292.9	
Ca	74.0 ± 22.1	66.2 ± 40.5	545.7 ± 304.5	
Na	72.6 ± 34.2	47.0 ± 29.8	412.4 ± 247.5	
Fe	42.0 ± 21.0	21.1 ± 23.2	353.8 ± 219.1	
K	39.3 ± 15.0	22.8 ± 18.0	263.8 ± 159.1	
Zn	21.1 ± 15.5	7.8 ± 12.5	182.7 ± 180.1	
Mg	19.9 ± 7.8	11.2 ± 5.2	144.9 ± 79.6	
Al	16.1 ± 10.1	18.4 ± 22.6	142.5 ± 126.9	
P	12.8 ± 8.9	14.0 ± 5.4	86.3 ± 93.6	
Pb	3.2 ± 1.4	0.3 ± 0.9	23.8 ± 15.5	
Cu	2.2 ± 1.1	1.5 ± 2.2	17.8 ± 10.4	
Ba	2.2 ± 0.7	0.6 ± 0.6	17.6 ± 9.8	
Mn	1.8 ± 1.0	0.5 ± 0.3	16.0 ± 11.2	
Cr	2.2 ± 0.5	5.0 ± 1.9	6.4 ± 3.0	
Se	0.6 ± 0.2	0.0 ± 0.0	5.8 ± 3.4	
Ti	0.6 ± 0.2	0.1 ± 0.1	5.2 ± 2.9	
Sb	0.6 ± 0.1	0.0 ± 0.0	4.4 ± 2.4	
Sr	0.4 ± 0.2	0.2 ± 0.1	3.6 ± 2.2	
As	0.4 ± 0.1	0.0 ± 0.0	3.4 ± 1.9	
Mo	0.4 ± 0.2	0.2 ± 0.3	2.8 ± 1.5	
Ni	0.2 ± 0.3	0.1 ± 0.5	1.8 ± 1.5	
V	0.2 ± 0.1	0.0 ± 0.0	1.4 ± 0.9	
Cd	0.1 ± 0.1	0.1 ± 0.1	0.9 ± 0.5	
Rb	0.1 ± 0.0	0.0 ± 0.0	0.6 ± 0.4	
Ce	0.0 ± 0.0	0.0 ± 0.0	0.4 ± 0.3	
La	0.0 ± 0.0	0.0 ± 0.0	0.3 ± 0.2	
Co	0.0 ± 0.0	0.1 ± 0.0	0.2 ± 0.1	

Units are ng/mg; n = 14 filters. Data are means \pm SD.

Supplemental Material, Table S2. Effect of PM_{2.5} exposure on circulating inflammatory cytokines in WT and CCR2-/- mice fed an HFD.

	Groups			
Items	WT-FA	WT-PM	CCR2-FA	CCR2-PM
TNFα (pg/ml)	9.7 ± 0.6	15.6 ± 3.0	12.4 ± 2.9	11.4 ± 1.4
IL-6 (pg/ml)	5.1 ± 0.4	11.2 ± 5.1	5.3 ± 0.5	9.0 ± 1.8
MCP-1 (pg/ml)	32.0 ± 2.2	33.0 ± 2.2	111.2 ± 21.1***	120.4 ± 14.7***
IFNγ (pg/ml)	1.8 ± 0.2	2.4 ± 0.8	2.1 ± 0.4	1.8 ± 0.2
IL-12 p70 (pg/ml)	10.8 ± 1.3	8.5 ± 2.2	15.1 ± 4.0	8.4 ± 0.9

Note: ***p < 0.001 compared with WT-FA group, ###p < 0.001 compared with WT-PM group. Data are expressed as means \pm SEM. n = 7-9 per group.

Supplemental Material, Figure S1. $PM_{2.5}$ concentration to which mice were exposed at the study site. Data are means \pm SD of 9-12 filters.

Supplemental Material, Figure S2. Effect of PM_{2.5} exposure on endothelium-dependent vascular relaxation in aorta from HFD-fed mice. A-B, Maximum relaxation, EC₅₀ and dose-response to acetylcholine (A) and insulin (B) in aortic rings precontracted with phenylephrine. *p < 0.05, **p < 0.01, ***p < 0.001 when WT-PM compared to WT-FA group. n = 7-9 per group.

Supplemental Material, Figure S3. Effect of PM_{2.5} exposure on mRNA levels of genes in VAT and liver of HFD-fed mice. A, mRNA levels of genes involved in adipocyte function in VAT. B, mRNA levels of genes involved in lipolysis and mitochondrial oxidation and/or biogenesis in VAT. Hormone sensitive lipase (HSL), Adipose triglyceride lipase (ATGL), Lipoprotein lipase

(LPL) are involved in lipolysis. Cytochrome c oxidase subunit VI (COX4), Va (COX5a), VIIa (COX7a), peroxisome proliferator-activated receptor gamma coactivator 1 α and β (PGC1 α , PGC1 β), and medium-chain acyl-CoA dehydrogenase (MCAD) are involved in mitochondrial oxidation. Nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (mtTFA) are involved in mitochondrial biogenesis. C, mRNA levels of genes involved in lipid metabolism in the liver. Acyl-CoA oxidase (ACO), Carnitine palmitoyltransferase 1 (CPT-1), and PPAR α are involved in β -oxidation. Fatty acid binding protein 1 (FABP1), FABP2, FABP5, and CD36 are involved in fatty acid uptake. Microsomal triglyceride transfer protein (MTP) and Apolipoprotein b (Apob) are involved in VLDL secretion.*p < 0.05 when WT-PM compared to WT-FA group, #p < 0.05 when CCR2-PM compared to WT-PM group. n = 7-9 per group.

Supplemental Material, Figure S4. Effect of PM_{2.5} exposure on glucose metabolism-related signals in the liver and muscle of HFD-fed mice. A, mRNA levels of gluconeogenesis-related genes in the liver. B and D, Western blotting for PEPCK (B) and phospho-GSK3 β /total GSK3 β (D) in the liver. C, mRNA levels of glycolysis-related gene in the liver. E, mRNA and protein levels of GLUT-4 expression in the skeletal muscle. *p < 0.05 when WT-PM compared to WT-FA group, #p < 0.05, ##p < 0.01 when CCR2-PM compared to WT-PM group. n = 5-9 per group.